A Convex Relaxation Approach to the Affine Subspace Clustering Problem
نویسندگان
چکیده
Abstract. Prototypical data clustering is known to su↵er from poor initializations. Recently, a semidefinite relaxation has been proposed to overcome this issue and to enable the use of convex programming instead of ad-hoc procedures. Unfortunately, this relaxation does not extend to the more involved case where clusters are defined by parametric models, and where the computation of means has to be replaced by parametric regression. In this paper, we provide a novel convex relaxation approach to this more involved problem class that is relevant to many scenarios of unsupervised data analysis. Our approach applies, in particular, to data sets where assumptions of model recovery through sparse regularization, like the independent subspace model, do not hold. Our mathematical analysis enables to distinguish scenarios where the relaxation is tight enough and scenarios where the approach breaks down.
منابع مشابه
Symmetry-free SDP Relaxations for Affine Subspace Clustering
We consider clustering problems where the goal is to determine an optimal partition of a given point set in Euclidean space in terms of a collection of affine subspaces. While there is vast literature on heuristics for this kind of problem, such approaches are known to be susceptible to poor initializations and getting trapped in bad local optima. We alleviate these issues by introducing a semi...
متن کاملModified Convex Data Clustering Algorithm Based on Alternating Direction Method of Multipliers
Knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering in which there is no need to be peculiar about how to select initial values. Due to properly converting the task of optimization to an equivalent...
متن کاملSDO relaxation approach to fractional quadratic minimization with one quadratic constraint
In this paper, we study the problem of minimizing the ratio of two quadratic functions subject to a quadratic constraint. First we introduce a parametric equivalent of the problem. Then a bisection and a generalized Newton-based method algorithms are presented to solve it. In order to solve the quadratically constrained quadratic minimization problem within both algorithms, a semidefinite optim...
متن کاملA Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint
In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...
متن کاملSubspace Clustering with a Twist
Subspace segmentation or clustering can be defined as the process of assigning subspace labels to a set of data points assumed to lie on the union of multiple low-dimensional, linear subspaces. Given that each point can be efficiently expressed using a linear combination of other points from the same subspace, a variety of segmentation algorithms built upon `1, nuclear norm, and other convex pe...
متن کامل